Nanotoxicology: Balancing Risks and Opportunities in Nanotechnology

Authors

  • S. J. Abubakar Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero, Kebbi State, Nigeria
  • I. O. Ishola Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria

DOI:

https://doi.org/10.51412/psnnjp.2025.30

Keywords:

Nanotechnology, Nanotoxicology, Nanoparticles, Cytotoxicity, Mechanisms of Toxicity
         Abtract Views | PDF Download: 4 / 3

Abstract

Background: Nanotechnology is making remarkable strides in medicine, industry, and environmental applications, thanks to the unique behaviors of materials at the nanoscale. However, as these applications expand, so do concerns about how nanoparticles might affect human health and the environment are of great interest. The growing interest to understand the pharmaceutical benefits of nanoparticles and potential health risks necessitates the current review.

Materials and methods: This review brings together recent findings on nanoparticle behavior and toxicity, and explores how risk can be reduced through improved testing methods, material engineering, and stronger collaboration between researchers, policy makers, and industry stakeholders.

Discussion: Studies have shown that prolonged uptake of nanoparticles could bioaccumulates overtime which can trigger harmful effects like oxidative stress, inflammation, as well as genotoxic effect, which may contribute to lung, kidney, liver, cardiovascular and neurological disorders. Interestingly, deeper insight into the toxic pathways could help in the discovery and development of a safer material design and smarter applications, such as precision drug delivery with fewer side effects.

Conclusion: This narrative review provide rationales toxic effects of nanoparticles as well as interactions of nanomaterials with biological systems, while providing perspective on the long-term implications of nanoparticles uptakes. Thus, striking the right balance between the duration, concentration and route of exposures could reduce the toxic effect of nanoparticles. These basic studies will provide a solid foundation for engineering the next generation of nanoscale devices and materials, thus, reducing their toxic effects.

Author Biographies

S. J. Abubakar, Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero, Kebbi State, Nigeria

African Center of Excellence for Drug Research, Herbal Medicines Development and Regulatory Science
(ACEDHARS), University of Lagos, Nigeria
Tel: +2348032915146

I. O. Ishola, Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria

African Center of Excellence for Drug Research, Herbal Medicines Development and Regulatory Science
(ACEDHARS), University of Lagos, Nigeria

References

Oberdörster G, Stone V and Donaldson K (2007) Toxicology of nanoparticles: A historical perspective. Nanotoxicology, 1(1), 2–25.

https://doi.org/10.1080/17435390701314761 DOI: https://doi.org/10.1080/17435390701314761

Wright PF (2016) Potential risks and benefits of nanotechnology: perceptions of risk in sunscreens, Medical Journal of Australia,

(10): 369 - 370. https://doi.org/10.5694/mja15.01128 DOI: https://doi.org/10.5694/mja15.01128

Salim D and Hasary HJ (2022) Nanotoxicology: An Integrative Environmental Challenge. Nanotoxicology (3). https://doi.org/10.54133/ajms.v3i.80 DOI: https://doi.org/10.54133/ajms.v3i.80

Grand View Research (2022) Report overview. [cited 2022 Aug 16]. Available from: https://www.grandviewresearch.com/industry-

analysis/nanotechnology-and-nanomaterials-market.

Vinay K, Neha S and Maitra SS (2017) In vitro and in vivo toxicity assessment of nanoparticles. International Nanotechnology Letters, 7:243–256. http://dx.doi.org/10.1007/s40089-017-0221-3 DOI: https://doi.org/10.1007/s40089-017-0221-3

Saleh TA (2020) Nanomaterials: Classification, properties, and environmental toxicities, Environmental Technology and Innovation, 20 (11): 101067. http://dx.doi.org/10.1016/j.eti.2020.101067 DOI: https://doi.org/10.1016/j.eti.2020.101067

Maria Antonietta Zoroddu, Serenella Medici, Alessia Ledda, Valeria Marina Nurchi, Joanna I. Lachowicz, Massimiliano Peana (2014) Toxicity of Nanoparticles, Current Medicinal Chemistry, 21 (33): 3837 - 53. DOI: 10.2174/0929867321666140601162314 DOI: https://doi.org/10.2174/0929867321666140601162314

Li L, Xi WS, Su Q, Li, Y, Yan GH, Liu Y, Wang H and Cao A (2019) Unexpected size effect: the interplay between different sized nanoparticles intheir cellular uptake, Nano Micro Small, 15(38): 1901687. DOI: .10.1002/smll.201901687 DOI: https://doi.org/10.1002/smll.201901687

Wei Z, Chen L, Thompson DM and Montoya LD (2014) Effect of particle size on in vitro cytotoxicity of titania and alumina nanoparticles,

Journal of Expremental Nanoscience, 2014, 9: 625 – 638. https://doi.org/10.1080/17458080.2012.683534 DOI: https://doi.org/10.1080/17458080.2012.683534

Shrestha S, Wang B and Dutta P. (2020). Nanoparticle processing: understanding and controlling aggregation, Advances in Colloid Interface Science, 279:102162. DOI: 10.1016/j.cis.2020.102162. DOI: https://doi.org/10.1016/j.cis.2020.102162

Huang C, Chen X, Xue Z and Wang T (2020). Effect of structure: a new insight into nanoparticle assemblies from inanimate to animate, Science Advances, 6(20), eaba1321, DOI: 10.1126/sciadv.aba1321. DOI: https://doi.org/10.1126/sciadv.aba1321

Dong X, Wu Z, Li X, Xiao L, Yang M, Li Y, Duan J and Sun Z (2020) The size-dependent cytotoxicity of amorphous silica nanoparticles: a systematic review of in vitro studies, International Journal of Nanomedicine, 15:9089–9113. DOI: 10.2147/IJN.S276105. DOI: https://doi.org/10.2147/IJN.S276105

Sabourian P, Yazdani G, Ashraf SS, Frounchi M, Mashayekhan S, Kiani S and Kakkar A (2020) Effect of physico-chemical properties of

nanoparticles on their intracellular uptake, International Journal of Molecular Science, 21: 8019. https://doi.org/10.3390/ijms21218019 DOI: https://doi.org/10.3390/ijms21218019

Wu Z, Yang S and Wu W, (2016) Shape control of inorganic nanoparticles from solution, Nanoscale 8(3):1237-1259. DOI: 10.1039/c5nr07681a DOI: https://doi.org/10.1039/C5NR07681A

Wo ́zniak A., Malankowska A, Nowaczyk G, Grze ́skowiak B, F, Tu ́snio, K, Słomski, R, Zaleska- Medynska A. and Jurga, S. (2017). Size

and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications, Journal of Material Science: Material Medicine, 28 (6):92, DOI: .10.1007/s10856-017-5902-y

Asati A, Santra S, Kaittanis C and Perez JM (2010) Surface- charge - dependent cell localization and cytotoxicity of cerium oxide nanoparticles, ACS Nano, 4(9), 5321–5331. DOI: 10.1021/nn100816s. DOI: https://doi.org/10.1021/nn100816s

Jeon S, Clavadetscher J, Lee, DK Chankeshwara SV, Bradley, M. and Cho WS (2028). Surface charge-dependent cellular uptake of polystyrene

nanoparticles, Nanomaterials, 8(12):1028. DOI: 10.3390/ NANO8121028.

Schauer R, (2009) Sialic acids as regulators of molecular and cellular interactions, Current Opinion in Structural Biology, 19:507–514. DOI: DOI: https://doi.org/10.1016/j.sbi.2009.06.003

1016/j.sbi.2009.06.003. DOI: https://doi.org/10.1088/1126-6708/2009/06/003

Fröhlich E (2012). The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles, International Journal of

Nanomedicine, 7: 5577 – 5591. DOI: 10.2147/IJN.S36111. DOI: https://doi.org/10.2147/IJN.S36111

Untener EA, Comfort KK, Maurer EI, Grabinski CM, Comfort DA and Hussain SM (2013) Tannic acid coated gold nanorods demonstrate a distinctive form of endosomal uptake and unique distribution within cells, ACS Applied Material and Interfaces, 5(17): 8366–8373. DOI: 10.1021/am402848q. DOI: https://doi.org/10.1021/am402848q

Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller J, Hutchison MJ, Schlager JJ and Hussain SM (2011) Surface charge of gold nanoparticles mediates mechanism of toxicity, Nanoscale, 3 (2): 410 – 420. DOI: 10.1039/c0nr00478b. DOI: https://doi.org/10.1039/c0nr00478b

Tao W, Zhang J, Zeng X, Liu D, Liu G, Zhu X, Liu Y, Yu Q, Huang L and Mei L (2015). Blended Nanoparticle System Based on Miscible Structurally Similar Polymers: A Safe, Simple, Targeted, and Surprisingly High Efficiency Vehicle for Cancer Therapy, Advance Healthcare

Material, 4 (8): 1203 – 1214. DOI: 10.1002/adhm.201400751. DOI: https://doi.org/10.1002/adhm.201400751

Lund T, Callaghan MF, Williams P, Turmaine M, Bachmann C, Rademacher TI, Roitt M and Bayford R (2011) The influence of ligand organization on the rate of uptake of gold nanoparticles by colorectal cancer cells, Biomaterials, 32 (36): 9776 – 9784. DOI: DOI: https://doi.org/10.1016/j.biomaterials.2011.09.018

1016/j.biomaterials.2011.09.018. DOI: https://doi.org/10.1088/1475-7516/2011/09/018

Yeh, Y. C., K. Saha, B. Yan, O. R. Miranda, X. Yu and Rotello V. M. (2013) The role of ligand coordination on the cytotoxicity of cationic quantum dots in HeLa cells, Nanoscale, 5(24):12140–12143. DOI: .10.1039/c3nr04037b DOI: https://doi.org/10.1039/c3nr04037b

Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicological Sciences, 115(2):521-534. doi: 10.1093/toxsci/kfq076 DOI: https://doi.org/10.1093/toxsci/kfq076

Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW and Tang L (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent, Part. Fibre Toxicology, 7: 22, https://doi.org/10.1186/1743-8977-7-22 DOI: https://doi.org/10.1186/1743-8977-7-22

Nel A, Xia T, Mädler L and Li N (2006) Toxic potential of materials at the nanolevel. Science, 311 (5761): 622– 7,

https://doi.org/10.1126/science.1114397 DOI: https://doi.org/10.1126/science.1114397

Orel VE, Dasyukevich O, Rykhalskyi O, Orel VB, Burlaka A, Virko S (2021) Magneto-mechanical effects of magnetite nanoparticles on Walker-256 carcinosarcoma heterogeneity, redox state and growth modulated by an inhomogeneous stationary magnetic field. Journal of Magnetism

and Magnetic Materials, 538: 168314, https://doi.org/10.1016/j.jmmm.2021.168314 DOI: https://doi.org/10.1016/j.jmmm.2021.168314

Seabra AB and Durán N (J2015). Nanotoxicology of Metal Oxide Nanoparticles. Metals, 5(2): 934–975. : .doi 10.3390/met5020934 DOI: https://doi.org/10.3390/met5020934

Buzea C, Pacheco II, Robbie K (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2 (4).

https://doi.org/10.1116/1.2815690 DOI: https://doi.org/10.1116/1.2815690

Jiang X, Rocker C, Hafner M, Brandholt S, Dörlich RM and Nienhaus GU (2020). Endo- and exocytosis of nanoparticles in mammalian cells.

Nano Today, 10 (1): 48 – 60. https://doi.org/10.1016/j.nantod.2014.12.003 DOI: https://doi.org/10.1016/j.nantod.2014.12.003

Peters A, Wichmann HE, Tuch T, Heinrich J and Heyder J (2006) Respiratory effects are associated with the number of ultrafine particles. American Journal of Respiratory and Critical Care Medicine, 155 (4): 1376 – 1383. https://doi.org/10.1164/ajrccm.155.4.9105082 DOI: https://doi.org/10.1164/ajrccm.155.4.9105082

Yokel RA and Macphail RC (2011) Engineered nanomaterials: Exposures, hazards, and risk prevention. Environmental Health Perspectives, 1 19 (7): 825 – 836. https://doi.org/10.1289/ehp.1003078 DOI: https://doi.org/10.1186/1745-6673-6-7

Card JW, Zeldin DC, Bonner JC and Nestmann ER (2008). Pulmonary applications and toxicity of engineered nanoparticles. American Journal of Physiology-Lung Cellular and Molecular Physiology, 295 (3): L400 – L411. https://doi.org/10.1152/ajplung.00027.2008 DOI: https://doi.org/10.1152/ajplung.00041.2008

Jain KK (2012). The role of nanobiotechnology in drug discovery. Drug Discovery Today, 10 (21): 1435 – 1442. DOI: https://doi.org/10.1016/S1359-6446(05)03573-7

https://doi.org/10.1016/j.drudis.2005.10.006

Shvedova AA, Kisin ER, Porter D, Schulte P, Kagan VE, Fadeel B and Castranova V (2012). Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus? Pharmacology and Therapeutics, 121 (2): 192 – 204. https://doi.org/10.1016/j.pharmthera.2008.10.005 DOI: https://doi.org/10.1016/j.pharmthera.2008.10.009

Fadeel B and Garcia-Bennett AE (2010). Better safe than sorry: Understanding the toxicological properties of in organic nano particles manufactured for biomedical applications. Advance Drug Delivery Reviews 8;62(3):362-74. https://doi.org/10.1016/j.addr.2009.11.008 DOI: https://doi.org/10.1016/j.addr.2009.11.008

Kahru A and Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology, 269 (2-3): 105 - 119,

https://doi.org/10.1016/j.tox.2009.08.016 DOI: https://doi.org/10.1016/j.tox.2009.08.016

Duncan R (2011) Polymer therapeutics as nanomedicines: New perspectives. Current Opinion in Biotechnology, 22(4):492-501.

https://doi.org/10.1016/j.copbio.2011.05.507 DOI: https://doi.org/10.1016/j.copbio.2011.05.507

Khaydarov Renat & Khaydarov, R.A. & Estrin, Yuri & Evgrafova, Svetlana & Scheper, Thomas & Endres, Christian. (2009). Nanomaterials: Risks and benefits. NATO Science for Peace and Security Series C: Environmental Security. 287-297. https://www.researchgate.net/publication/285444003_Nanomaterials_Risks_and_benefits

Maynard AD and Aitken RJ(2007). Assessing exposure to airborne nanomaterials: Current abilities and future requirements. Nanotoxicology, 1 (1): 26 - 41. https://doi.org/10.1080/17435390701314720 DOI: https://doi.org/10.1080/17435390701314720

Oberdörster G, Oberdörster E and Oberdörster J (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7): 823–839. https://doi.org/10.1289/ehp.7339 DOI: https://doi.org/10.1289/ehp.7339

Downloads

Published

2025-05-24

How to Cite

Abubakar, S. J., & Ishola, I. O. (2025). Nanotoxicology: Balancing Risks and Opportunities in Nanotechnology. The Nigerian Journal of Pharmacy, 59(1), 309–315. https://doi.org/10.51412/psnnjp.2025.30